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Abstract 

We calculate analytically the probability distribution for peculiar velocities on scales from lOh-’ to 

BOh-‘Mpc with cosmic string loops as the dominant source of primordial gravitational perturbations. We 

consider a range in the of parameters PGp appropriate for both hot (HDM) and cold (CDM) dark matter 

scenarios. An R = 1 CDM Universe is assumed with the loops randomly placed on a smooth background. It 

is shown how the effects can be estimated of loops breaking up and being born with a spectrum of sizes. It 

is found that to obtain large scale streaming velocities of at least 400 km/s it is necessary that either a large 

value far flGp or the effect of loop fissioning and production details be considerable. Specifically, for optimal 

CDM string parameters Gp = lo-‘, 0 = 9, h = .5, and scales of BOh-’ Mpc, the parent size spectrum must 

be 36 times larger than the evolved daughter spectrum to achieve peculiar velocities of at least 400 km/s 

with a probability of 63%. With this scenario the microwave background dipole will be less than 800 km/s 

with only B 10% probability. The string induced velocity spectrum is relatively llat out to scales of about 

2t.,/a,, and then drops off rather quickly. The flatness is a signature of string models of galaxy formation. 

With HDM a larger value of @Gp is necessary for galaxy formation since accretion on small scales starts 

later. Hence, with HDM, the peculiar velocity spectrum will be larger on large scales and the flat region will 

extend to larger scales. If large scale peculiar velocities greater than 400 km/s are real then it is concluded 

that strings plus CDM have difficulties. The advantages of strings plus HDM in this regard will be explored 

in greater detail in .a later paper. 
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1. Introduction 

It has been suggested that topologically stable vortex lines, ‘cosmic strings,” may have formed et II 

phase transition in the very early Universe’. In another area of cosmology is the fact that a satisfactory 

theory for the origin of galaxies has yet to be fully developed. Two basic, yet still very open issues are the 

origin and nature of the initial density fluctuations and the generation of large scale structure. Inspired by 

the possibility of a simple, origin-issue free solution to these problems, various people have been trying to 

generate a consistent scenario with cosmic strings 2-6. To date .a fatal tlaw has yet to be found, although 

many issues are still open. In particuliar, do strings work better with hot (HDM) or cold (CDM) dark 

matter? This issue we will exlore vis-a-vis the question of large scale streaming velocities in this and a 

succeeding paper. 

The basic string scenario we will follow is that after cosmic strings formed they straightened out and 

stretched. They also would occassionally hit each other and themselves. Albrect and Turoke have shown 

that it is necessary that such intersecting strings intercommute with a probability of at least LL few tenths 

in order for the strings not to dominate the mass density of the Universe. Recent work SuggeStS that such a 

probability is likely7. The picture we have then is a network of strings with dimensionless string tension Gp 

(we assume c=l unless, other wise stated) with curvature on the order of the horizon in size and in dynamic 

equilibrium with loops being formed/reabsorbed from/onto each other and infinite strings. However, M the 

Universe expands so does the curvature of the strings. Loops near the horizon in size will frequently become 

subhorizon in size before being reabsorbed. This happens either through the simple expansion of the horizon 

or loop fissioning. Thus relative to the superhorizon strings the subhorizon loops shrink away, and it becomes 

increasingly less probable for them to reconnect. The division between these two stages in B loop’s life we 

define to be when t = R/b, with R the size of the loop and b some constant of the order of horizonjt. 

These cast-off loops are hypothesized to be the seeds for galaxies and clusters’. Once subhorizon, the loops 

slowly gravitationally radiate away with a lifetime of about’ 7R/Gp, with 7 FJ 0.1. While the details are 

still weak it seems this basic theory can easily account for the mass and number of galaxies as well as satisfy 

the requirement of a small microwave background anisotropy’O. String theory also appears to be the only 

theory to date that naturally account2 for the apparent scale free14,16 nature of the cluster-cluster and 
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galaxy-galaxy correlation functions. 

A measurement that has recently gained some notoriety is the bulk motion of large regions (m 50h-‘hlpc 

in radius). While difficult to measure accurately, its lack of dependance on the assumption of light tracing 

matter makes it potentially a very useful discriminator of structure formation theories. Table I list,s several 

measurements of our peculiar velocity relative to distant spheres and shells of galaxies around us. Presently 

there is still strong disagreement among the various groups but superior statistics are expected in the near 

future. 

In anticipation of .a clearer answer to this issue, Vittorio and Turner I1 have calculated the expected 

peculiar velocities on different scales in Bat models of the Universe with various forms of dark matter 

assuming adiabatic gaussian primordial density fluctuations. In this paper we consider the scenario of .a fiat 

Universe with a network of heavy cosmic strings (produced at kT w 10’BGeV) as the primordial fluctuation 

spectrum (strings yield non-guassian primordial BuctuationszB). For the bulk of this paper we will carry 

out calculations with a uniform background of CDM; however, we will also comment on the direction of 

differences for HDM scenarios. A later paper will look at the HDM scenario in full detail. It should be 

pointed out that on scales larger than the HDM J cans radius the particles are effectively cold. Hence on 

scales larger than this the results discussed here still apply. 

In the next section the effect of an isolated loop in r. CDM background is discussed. The qutrntity we 

will be trying to get at is the number of times that, either isolated or conspiring in groups, loops would 

induce a peculiar velocity of at least vp. Later this quantity will be used to determine the probability of 

inducing a given peculiar velocity. 

In section 3 we discuss the effect of small loops which, when the individual contributions are added 

together randomly, add up to at least up. 

In section 4 the loop density functions are deEned, and in section 5 the effect of loops breaking up is 

discussed. The results are presented and discussed in section 6 and conclusions made in section 7. 



2. Peculiar Velocities Indoced by Isolated Loops 

The perturbations in this scenario will be very small and isolated, hence one can use a simple spherical 

accretion model for the growth of perturbations around the loops. The picture we use here is chat we are 

“falling” into every loop around us, but since our infall is still linear on large scales we can simply add up 

all of the contributions like steps in (L random walk, I& = C I$, where V; is the peculiar velocity induced 

by loop i. 

We of course do not know the distribution of these loops, so what we actually calculate is the probability 

of inducing II peculiar velocity greater than some value vP using an assumed loop density function. 

The trajectory for a negative energy shell is given by 

i* = 2GM 2GM -- 
r ri 

where T; is the initial distance from the loop and M is the mass enclosed within radius 7, and it is assumed 

that shells never cross. To first order in the perturbing mass this becomes 

with & = ML,., ?pb ( In ini’r,3,it)-‘. Defining &3R as the mass of the loop we have 

kw 
up = +R- 

rri 

where to first order T; = air. 0 relates the perimeter of the loop to its mean radius. The present value 

generally assumed’ is fl = 9, although this is not well established. In structure formation cslculatians @Ccl 

always occur together so for simplicity we will usually treat them .SS one parameter in this paper. 

Defining D(R) M the present number density of R size loops we have then for the mean number of 

individual loops that induce a peculiar velocity of at least vP: 

N(+) = 11 D(R)B(R - j;;;;~o~)4nr2drdR 

For each case considered, the integral over R was evaluated then the r integral was performed numerically. 

This was found to be the best approach since while the integrals are trivial, the step functions breed new 

stepfunctions. In the end the final closed form solution is e. rather unenlightening three pages long. 

4 



S. Induced Pertnrbation from Aggregates of Loops 

The number of u to v + du loops is given by -dN(v). Adding together these loops like steps in a random 

walk or random errors one Ends 
UP 

&“c.d = 
/ 

-dN(v)v’ 

0 

The number of times vP is induced is then 

N(< up) = (F)’ 

One might suspect a square root should be taken somewhere here. To see why this is not so suppose the 

above integral resulted in u:,~~~.,, = 4~;. Then we have 4 distinct collections of loops that induce up, not 2. 

4. Distribntion Fnnctions Used 

a) Loops Born Outside Our Horhn and Remain Outside Until t > t., 

Two density functions are required since loops formed before t., do some of their expanding away during 

l.he radiation dominated em. Hence we have 

312 
4, R < bt., 

2 
R > bt., 

In this model w is (L universal constant proportional to the cumber of loops formed per horizon volume, 

per horizon time. Albrect and TurokO found this form of the density function to work quite well for their 

simulations in the radiation dominated era. They only considered loops born before t., and thus could only 

fit the amplitude of the R i bt., function: w/bSf2 = Y FZI .Ol. It seems reasonable to introduce the extra 

parameters b and b’ since the horizon scales differently after t., than it does before. 

One must be careful with some of the limits of integration. The r limits are simply r,,.;” to 3t,,, ) 

where r,,,i,, is the size of the sphere being coherrently accelerated. R ranges from effectively zero to bt., for 

loops born before t.,. For loops born afterwards things are more complicated since only loops less than b’ti 

(t; being the time when rmin WIU the horizon size) exist when a particular horizon is being crossed. Using 

t; = t,.,ai sfl = a;r/J one then gets the R limits to be bt., to b’t,,,(&)‘. 
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Finally we must also define ai, the scale factor when we are Brat perturbed by the loop. Here ai is set 

when the loop first enters the horizon: ti. The horizon then we define as bHt;. Hence ai = bHti/r. Recall that 

r is always our present distance from the loop in question. Then ai = t,,,ai ‘12brrjr or a; = (r/b~~/t,,,)2. 

bH unfortunately varies from about 2 before t., to 3 well after. Since most of the space that will be integrated 

over will have bH a S we assume it to be S for all t > t.,. 

b) loops Born Before t., With Centers in Our l&&on Before t., 

Here the density function is given by 

s/z 
c&z 4, 

(bt,,)JP R-6’2 

and a; = aep since all perturbations start to grow at t., here. 

The R limits are as above for loops born before t.,. The r limits are r,,,i,, to 2.121,,, the horizon at t.,. 

A complication here and in the last catagory are cases where the loop is ‘born” sround us. To correct 

for this we first limit the above ce.se to where R < aeqr, i.e. only consider loops that we are outside of by 

t.,. For loops with R > +r we set the time of accreation to be when 7; = R, i.e., just e.~ we pass outside 

the loop. For this integral ai = R/r. 

c) Loops Born After t., With Centers Inside Our H&son 

The density function is as in the R z bt., cme of a): 

D(R) = w(b’t,,,R)-” 

However, in this catagory perterbations start to grow 89 soon as the loops are born, hence a; = 

(R/b’/t..ow)‘/S, with the condition R < air. For R > air, then a; = R/r, M in b). 

The limits in this case are r,,,;” to 3.t,,, for r and bt., to b’t,,, for R. 

Combining all of these cues gives the mean number of times a vp perturbation is generated. The relation 

we will use is the inverse of this: for a given N we determine the velocity that is induced that many times. 

Choosing N = 1 and assuming the number of vp perturbations is Poisson distributed, the probability of one 

or more vp perturbations is 1 - e-l = 63%. That is, the peculiar velocity on a given scale are at least vp 

63% of the time. 
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5. Effect of Loop Fissioning 

There is substantial indication that once formed a loop breaks up into B number of daughterse,“. One can 

show that independent of how the loops are formed and or broken up, the spectrum remains unchanged up 

to .S constant factor and up to loop sires not too close to the largest parents”. The only assumption is that 

the mass of subhorizon loops generated per unit time per horizon volume goes as t-‘. 

Albrect and Turok calculated the evolved spectrum in their simulations. However, for the calculation 

of peculiar velocities we do not care if the loops fission since we only need the gravitational potential outside 

the parent loop. As long as the loop does not shatter into pieces that 0y apart so quickly that they envelop 

us, what s parent loop does after it forms is irrelevant for this calculation. This seems likely to be what 

generally happens, since for us to be ‘enveloped” would require us at one point to be close enough to the 

center of B parent loop such that it would take more than B few Hubble times (the time it would take for a 

loop to fission significantly) f or us to get away. This seems especially unlikely in view of recent evidence that 

parent loops are born with sizes on the order of e. fifth of the horizon size”. Thus to take into account loop 

fissioning all one has to do is ‘de-evolve” Albrect and Turok’s coefficient by multipling it by some breakup 

factor, B,. 

In this paper the effect of parent loops being born with a spectrum different from a delta function is not 

considered, but as will be discussed in the next section, one can see that the effect can be well approximated 

with another modification of the naive spectrum constant. 



0. ltesnus 

There are four parameters that we are at present free to adjust: h (Hubble’s constant divided by 100 km/s), 

$C/+ f (the fraction of the horizon represented by b and b’), and E,. Figures 2 through 5 show the effect 

of these parameters on the predicted peculiar velocities as II. function of scale. The values chosen for the 

parameters are largely for display purposes. As will be discussed bellow, the effect of variation in the 

parameters can be estimated quite accurately. For future reference, the estimated values for Gp2D is 10e6 

for CDM and 3 x 10e6 for HDM, assuming @ = 9. These values enable galaxy mass objects to form by 

redshifts of 1+ z SJ 10. The higher Gr for HDM is required because growth on galaxy scales doesn’t occur 

until later in such models. 

As expected @CJI has a linear effect, while B, increased velocities by about Bj (recall that increasing 

the number of sources of up by 4 increases the total induced peculiar velocity by only 2 when the contributions 

are added randomly). Unexpectedly, f has a quite uniform effect as well. One might expect reducing the 

maximum size of loops produced at any given time by a factor of 5 would have (L similar effect on the velocities 

induced. However, in our spectrum we only demand that the radiation era spectrum coefficients satisfy 

B;‘wlbJIa = .Ol, but the corresponding coefficient in the matter dominated era has (L l/b” dependsnce. 

Hence decreasing f by 5 increases the latter coefficient by fi. Further, on small scales, where the peculiar 

velocity is dominated by pm-t., loops the effect of reducing f is simply to cut off the high end of the loop 

spectrum, where the number density is very low. We thus get a less than expected effect because rather than 

reducing all of the loops by a factor f, we only loose a few big loops. The effect is not as big since beyond 

a certain size all loops get only one vote and those are very sparce. 

The fact that these two effects off on the peculiar velocities conspire to give a small and fairly uniform 

vertical shrinking of the curve is very fortunate for the followingreason. One way to take into account a more 

realistic parent spectrum would be to divide it into narrow intervals, calculate the number of up or better 

perturbations induced by that interval of the spectrum and sum the results. However, over the entire range 

of scales each term in the sum will be related to the ones we have calculated in this paper times same factor. 

Hence the effect of using (L delta function spectrum is again just an overall factor that can be determined 

and the effect negated once the real spectrum is known. 
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The Hubble constsnt is the only parameter whose variation produces dramatic changes in the peculiar 

velocity as a function of r. The plateau feature at small scales is a re0ection of the fact that loops born 

before t., do not get to contribute until after teq. Further, the most significant part of a loop’s perturbing 

effect occurs just after it is born or enters the horizon. Soon after that it is Hubble flowed away and bigger 

loops are formed. Consequently the dominant effect on scales smaller than Zt.,la,, are loops formed outside 

that scale. There is an he3 dependance to 2&,/a., thus larger plateaus occur for smaller h. The amplitude 

is smaller for smaller h since growth of perturbations starts latter. This plateau feature is B signature of 

string induced peculiar velocities and does not occur in gaussian density Buctuation scenarios. Ifour peculiar 

velocity relative to distant galaxies really does show little variation with scale out to some large distance 

this might be a strong argument in favor of strings. 



7. Conclosions 

It is perhaps worth pointing out here that there is no inconsistency between the large peculiar velocities 

one finds on small scales in e. calculation such as this and the small relative peculiar velocities observed 

for nearby galaxies. For some reason some people have connected these two numbers when in fact they 

are almost completely unrelated. The former involves the integrated effect of all perturbing masses beyond 

some scale, while the latter involves a complicated summing of effects on scales less than or on the order 

of the separation of the galaxies. From the Eatness of our peculiar velocity spectra one concludes that few 

significant perturbations occur near pairs of nearby galaxies. One would thus predict relatively small relative 

peculiar velocities. 

The calculation made here is admittedly simple-minded; however, as has been shown, two of the most 

significant issues, the break-up of loops and the initial spectrum of parent loops, can easily be accounted for 

once their true nature is known. Other approximations, such as turning on the Newtonian potential of the 

perturbing loops as soon as they are created or cross the horizon, the transition through t.,, and ignoring 

the skewing effect produced by perturbations accelerating one side of the sphere around us more than the 

other, are expected to change things by factors of order unity. The errors introduced by not knowing B, or f 

make consideration of these other effects rather pointless. It must be remembered that the numbers quoted 

here are not intended to form the basis of some experiment. Rather they are simply intended to indicate 

the reasonableness, or lack of it, of the cosmic string theory of galaxy formation in the context of large scale 

steaming velocities, and perhaps give same sort of feel for where the velocities are big and where they are 

trivial. The quantity we are trying to estimate here, the likelihood of particular streaming velocities, may 

not be measured accuately for a long time, if ever, Single data points for those spheres that surround us are 

still plagued with errorz of order the size of the data (except for that sphere that only includes us). With 

these limitations kept in mind we are left with the following conclusions: 

1) With CDM and h much larger than .5, situations with 1300 km/s streaming velocities on large and 

small scales become very rare: adjusting the parameters to get the large scales reasonable produces far 

too high velocities on smaller scales which presumably should be similar to that of the dipole anisotropy 

corrected for local motions. 
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2) To have streaming velocities on scales of SOh-‘Mpc of at least 400 km/s with 83 % confidence, CDM, 

h = .5, and f = .2 requires (@Cp/9 x 10V6)E,! FJ 6. This would also produce velocities on small scales of 

about 600& km/s with the same confidence, i.e., about 4 perturbations of 600 km/s or greater. Considered 

another way, the probability of having a peculiar velocity on small scales of less than 800 km/s would be 

10%. 

3) With hot dark matter the constraint on h would open up somewhat since non-relativistic matter 

domination would not come in until much later, hence the plateau would extend much further and lie lower. 

t One would expect the constraint on @G,&, to still be necessary to give large scales large peculiar velocities. 

However, on small scales peculiar velocities of about 000 km/s should be possible with (L more comfortable 

probability. Since a larger PGp is required for galaxy formation in a HDM Universe” this would mean a 

smaller value for B,. Better knowledge of the way loops form and break-up so that B, could be calculated 

would add considerably to the constraints imposed by streaming velocities. 

In summary, CDM and strings appear to have difficulties in producing large scale high peculiar velocities 

of the order reported by Burstein, Davies, Dressier, Faber, Lynden-Bell, Terlevich, and WegnerZe with a 

high probability. However, the larger values of @Ga associated with HDM and strings could yield much 

more favorable results, assuming the correctness of large large scale streaming velocities. In addition the 

later accretion times would yield less extreme peculiar velocities on smaller scales and a flat spectrum out 

to higher distance scales, for a given value of h. 

Thus HDM plus strings should be able to fit the Burstein et al. measurements as well 8s the microwave 

background with high probability. To our knowledge it is the only non-explosive R = 1 theory to be able to 

do so. Thus we will explore this model in more detail in a later paper. 
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Figure Captions 

1. Minimum expected peculiar velocities vs scale: GP = 1 x lOWe, EJ, = l., and f = 1. 

2. Minimum expected peculiar velocities vs scale: GP = 2 x lo-@‘, B, = l., and f = 1. 

3. Minimum expected peculiar velocities YS scale: GJA = 2 x lo-‘, B, = l., and f = .2 

4. Minimum expected peculiar velocities YS scale: G@ = 2 x lo-‘, B, = S., and f = .2 
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